A Systematic Comparison of Smoothing Techniques for Sentence-Level BLEU

نویسندگان

  • Boxing Chen
  • Colin Cherry
چکیده

BLEU is the de facto standard machine translation (MT) evaluation metric. However, because BLEU computes a geometric mean of n-gram precisions, it often correlates poorly with human judgment on the sentence-level. Therefore, several smoothing techniques have been proposed. This paper systematically compares 7 smoothing techniques for sentence-level BLEU. Three of them are first proposed in this paper, and they correlate better with human judgments on the sentence-level than other smoothing techniques. Moreover, we also compare the performance of using the 7 smoothing techniques in statistical machine translation tuning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing for Sentence-Level BLEU+1 Yields Short Translations

We study a problem with pairwise ranking optimization (PRO): that it tends to yield too short translations. We find that this is partially due to the inadequate smoothing in PRO’s BLEU+1, which boosts the precision component of BLEU but leaves the brevity penalty unchanged, thus destroying the balance between the two, compared to BLEU. It is also partially due to PRO optimizing for a sentence-l...

متن کامل

Accurate and Robust LFG-Based Generation for Chinese

We describe three PCFG-based models for Chinese sentence realisation from LexicalFunctional Grammar (LFG) f-structures. Both the lexicalised model and the history-based model improve on the accuracy of a simple wide-coverage PCFG model by adding lexical and contextual information to weaken inappropriate independence assumptions implicit in the PCFG models. In addition, we provide techniques for...

متن کامل

A Markov Model of Machine Translation using Non-parametric Bayesian Inference

Most modern machine translation systems use phrase pairs as translation units, allowing for accurate modelling of phraseinternal translation and reordering. However phrase-based approaches are much less able to model sentence level effects between different phrase-pairs. We propose a new model to address this imbalance, based on a word-based Markov model of translation which generates target tr...

متن کامل

A Comparison between Count and Neural Network Models Based on Joint Translation and Reordering Sequences

We propose a conversion of bilingual sentence pairs and the corresponding word alignments into novel linear sequences. These are joint translation and reordering (JTR) uniquely defined sequences, combining interdepending lexical and alignment dependencies on the word level into a single framework. They are constructed in a simple manner while capturing multiple alignments and empty words. JTR s...

متن کامل

Using Machine Translation Evaluation Techniques to Determine Sentence-level Semantic Equivalence

The task of machine translation (MT) evaluation is closely related to the task of sentence-level semantic equivalence classification. This paper investigates the utility of applying standard MT evaluation methods (BLEU, NIST, WER and PER) to building classifiers to predict semantic equivalence and entailment. We also introduce a novel classification method based on PER which leverages part of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014